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A uniformly valid asymptotic solution has been constructed for three-dimensional 
jet-flapped wings by the method of matched asymptotic expansions for high 
aspect ratios. The analysis assumes that the flow is inviscid and incompressible 
and is formulated on the thin airfoil theory in accordance with the well-established 
Spence (1961) theory in two dimensions. 

A simple method emerges in treating the bound vortices along the jet sheet 
which forms behind the wing with the aid of the following physical picture. 
Three distinct flow regions-namely inner, outer and Trefitz-exist in the 
problem. Close to the wing the flow approximates to that in two dimensions. 
Therefore, Spence’s solution in two dimensions applies. In  the outer region a 
wing shr inks to a line of singularities from which the main disturbances of flow 
in this region arise. In  particular, we find that the shape of the jet sheet, hence 
the strength of vortices, is now predetermined by the strength of the singularities 
there. Hence a complete flow field in the outer region can now be determined 
first by evaluating the flow due to various degrees of singularities along this line 
and then adding the effect of the jet bound vortices which is now known. Far 
removed from the wing, the well-known Trefftz region exists in which calcula- 
tions of aerodynamic forces can be most easily done. 

The result has been applied to various wing planforms such as cusped, elliptic 
and rectangular wings. The present result breaks down for rectangular wings. 
However, we can apply Stewartson’s (1960) solution for lifting-line theory for 
semi-infinite rectangular wings, because, to this second-order approximation it 
is established that the jet sheet in the outer region makes no contribution to lift, 
with the direct oontribution of the deflected jet a t  the exit being cancelled by 
the reduced circulation in the jet vortices. This result for the rectangular wing 
gives excellent agreement with the experiments made on a rectangular wing, 
while the result for elliptic wings underestimates them considerably. 

1. Introduction 
Because of the current interest in V/STOL applications, high lift devices 

particularly by means of high-speed jet flow using the abundant air supply of 
high by-pass engines are receiving considerable interest. The jet flap is one of 
such better known high lift devices in which the high-speed jet issues in thin 

t Present address : Department of Mathematics, University of Southampton 
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sheets near the trailing edge of the wings providing not only the main propulsive 
thrust but a high lift force. The original idea of the jet flap is quite old and dates 
back to  the early nineteen-thirties and a detailed historical account on it can 
be found in an article by Davidson (1956). 

In a series of papers Spence (1956,1958,1961) has given very extensive analysis 
of the jet flap in two dimensions. Spence assumes that the jet is concentrated 
within the thin sheet precluding the mixing of the jet with the ambient fluid. 
Using the linearized thin airfoil expansion, he can now replace the airfoil and 
the jet by the vortex sheet placed along the plane of the undisturbed flow whose 
strength must now be determined by satisfying the flow tangency conditions. 
The resulting mixed boundary-value problem was solved first by the Fourier 
expansions (Spence 1956) and then by the Mellin transforms (Spence 1961). 
Spence’s results give remarkable agreement with experimental data even for 
large jet deflexion angles as high as 60 degrees, indicating that the Spence theory 
using the thin jet approximation without mixing is well founded. 

The importance of the three-dimensional effects in the jet flap application is 
evident because the jet sheet which forms behind the wing can now sustain the 
pressure force across it; thus the bound vorticity must now extend not only over 
the wing but also over the jet sheet. This will act to reduce the effective aspect 
ratio considerably. See the definition of the effective aspect ratio in 3 7 for clarifica- 
tion. Indeed, one of the crucial points in the present three-dimensional analysis 
is the t,reatment of the bound vortices along the jet sheet whose shape, hence its 
vorticity strength, is a priori unknown. 

A first important extension of the Spence theory to three dimensions was done 
by Maskell & Spence ( 1959). They formulated the problem by the lifting surface 
theory. But the interdependence of the jet vorticity on the flow field makes the 
analysis almost intractable. Thus being unable to evaluate the downwash field 
exactly, they used two interpoIation formula and were able to express the lift 
coefficient in terms of the two-dimensiond results of Spence (1956) for the special 
case of uniform downwash in the spanwise direction, namely of elliptic loading. 
Despite the inexact interpolation methods used, their final results are con- 
sistent with the present result. This is because these interpolations are made 
carefully so that the final results would be always consistent with a clear physical 
picture presented in their paper. However, some modification is necessary in 
the asymptotic representation of the result and we discuss their solution further 
in $7 .  Das (1965), on the other hand, resorted to the Multhopp (1955) method 
in computing the downwash field after the similar formulation by the lifting 
surface theory. The method then becomes essentially the numerical integration 
of the downwash field at  various positions of pivotal points. The physical in- 
terpretation becomes obscured in the process. 

The author’s attention was drawn to a recent dissertation of Kerney (1967) 
who applied the method of inner and outer expansions to this problem. Even 
though his inner and outer solutions seem to match in an analogous manner as 
in the original work of Van Dyke (1964) for wings without jet flap, there is one 
serious defect in his analysis. No account is taken by Kerney of the effect of the 
bound vortices in the outer part of the jet sheet. That this effect cannot be 
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ignored becomes clear in the light of a physical picture to be presented in $ 3. 
Much care is necessary to take this effect into account. 

The purpose of this paper is to present an asymptotic theory for the three- 
dimensional jet-flapped wings which is uniformly valid in the whole flow field 
except local break-downs either near the wing tip region or the trailing edge 
region. See $ 2  and 5 for further discussions on this matter. The problem is 
formulated in $ 2 based on the thin airfoil expansion as originally presented by 
Maskell & Spence (1959) but slightly modified for our purpose of asymptotic 
theory for high aspect ratios (see Van Dyke (1964) and Kerney (1967)). Using 
this formulation we present a clear physical picture in $ 3  which is directly 
relevant to OUT analysis. This will not only illuminate the basic structure of 
the flow field but also greatly facilitates our analysis. An asymptotic solution 
obtained by the method of matched asymptotic expansions in $4 is consistent 
with this picture. After deriving the formula for aerodynamic forces on wings in 
$ 5, we apply the result of the analysis to flat wings of various wing plan forms 
such as cusped, elliptic and rectangular wings in $ 6 .  For rectangular wings, 
which are of practical interest, the present solution breaks down. We will show, 
however, that Stewartson’s (1960) elegant solution for the lifting line theory can 
be applied to the present problem. This result gives remarkable agreement with 
the experiments of Williams & Alexander (1957) who used a rectangular wing. 
However, the result for elliptic wings shows some considerable disagreement 
with these experimental data if the aspect ratio is small and/or Cj is large, 
namely the effective aspect ratio is small. The reason for this disagreement will 
be discussed in $ 7.  

2. Formulation 
In  the analysis, viscosity will be neglected altogether. We should note, however, 

that by imposing the flow tangency conditions along the wing surface and the 
jet sheet the present analysis provides a first valid approximation of the inviscid 
problem in the limit a Reynolds number approaches infinity, provided flow 
separation is avoided. This inviscid assumption also precludes any jet mixing. 
Next, following Spence (1956) and Maskell & Spence (1959) we use the thin 
airfoil theory. This requires that the wing and jet lies close to a plane in which 
the direction of the undisturbed flow lies so that all the perturbations of the flow 
caused by them are uniformly small. The validity of this expansion must be 
interpreted in accordancewit,h the physical situations of the problem. In principle, 
this expansion is valid a t  least up to the point of the nearest physical singularity 
in the problem such as flow separation. Therefore despite small disturbances 
assumed, 7, the jet deflexion angle, can still be taken as large as 50 N 60 degrees 
(Spence 1956) but not so for a since the flow separation is more sensitive to a. 
The problem can now be linearized so that the effect of thickness, incidence and 
camber may be treated separately. We further assume that the flow is incom- 
pressible. Obviously a subsonic flow becomes equivalent to the incompressible 
flow by the Gorthert rule for small disturbances. 

Now consider a cambered wing of zero thickness, whose planform is symmetric 
45-2 
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in both span and chordwise directions; see figure 1 for details. We choose the 
x co-ordinate as the direction of undisturbed uniform flow with a wing inclined 
from it by a small angle a. The y and x axes are taken in the span-wise direction 
and in the vertical direction downward, respectively, with the origin at the 
centre of symmetry. Undisturbed uniform velocity and the wing semi-span length 
will be chosen as unity without losing any generality. The wing planform will 
be described by c(y)/A where A is an aspect ratio. From the definition of aspect 
ratio, we require (see 5 6) 

ri 

The full governing equation for the velocity potential $ in an inviscid in- 
compressible fluid is the Laplace equation 

I / /  \ 

FIGURE 1. Co-ordinate system for jet-flapped wing. 

The flow tangency conditions on the basis of the thin airfoil approximations 

on the wing 
are 

w(x, y, 0) = 4x9 y) + 4y), - C(Y)/2A K x < c(y)/2A , (2.2) 

where ~ ( x ,  y) and a ( y )  denote the camber and the incidence of the wing. u,v,w 
are the velocity components in x, y, and x direction with (a, v, w )  = (#x, #u, #J; 

at the trailing edge 

w(x, y, 0) = d x ,  Y) + 4 4 )  + 7(y) at x = c (y ) /24  (2.3) 

T is the jet deflexion angle a t  the trailing edge relative to the wing incidence; 
on the jet sheet 

Yj(X, y) = - (CCj/24 w&, Y, 0). (2.4) 

Here 7, is the strength of the bound vorticity within the jet sheet, Cj the jet 
momentum coeficient defined as 2J/U2,pc, where J is the rate of momentum 
flow of the jet. In  deriving this relation, besides the thin jet sheet assumption 
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of Spence (1956), we further assume that the transverse transport of momentum 
within the jet, which will exist far downstream due to the r o h g  up of the vortex 
sheet, makes little contribution to the total downwash. This assumption may 
be justified in this problem for the following reasons. As it is well known, the 
free edge of the vortex sheet curls over under the influence of the inducedvelocity 
field of the vortex sheet, thus initiating the rolling-up process. In  this problem, 
however, because of the large momentum in the jet sheet, the trailing vortex 
sheet becomes considerably stiffened, thus delaying the rolling-up process further 
downstream. In this sense, the jet sheet behaves more like a solid plane sheet 
rather than a free vortex sheet. Far enough downstream, the rolling-up of the 
sheet still takes place. It is noted, however, that even then the total jet vorticity 
strength is not likely to change much because the additional contribution from 
the transverse jet momentum to the vorticity strength tends to be compensated 
by the reduced contribution of the lateral jet momentum as the rolling-up implies 
the reduced downwash towards the edges. Another important reason which 
justifies this assumption is that, in practice, the jet sheet which originally carries 
a large momentum dissipates itself and loses much of its momentum by the 
entrainment far downstream. That is, a t  a sufficiently downstream point where 
the rolling-up takes place, the jet vorticity strength is likely to be very small; 
the effect of the rolling-up on the downwash should, therefore, be very small. 
Indeed the excellent agreement of our analytical model with the experiment 
supports our argument above. Then (2.4) follows readily by noting that this 
bound vorticity is introduced to replace the pressure discontinuity across the 
jet sheet. This pressure discontinuity can be evaluated as the centrifugal force 
of the thin jet due to the sheet curvature. See Maskell & Spence (1959) for the 
details of the derivation. The discontinuity of the flow tangency a t  the trailing 
edge introduced by the jet sheet condition of (2.3) gives rise to a logarithmic 
singularity in the bound vorticity (Spence 1956). Therefore, the velocity on the 
upper side of the jet sheet becomes unbounded while that on the lower side 
must be stagnant. The relation (2.4) which does not take this stagnation condition 
into account apparently breaks down. However, the more exact treatment of 
Ackerberg (1968) has shown that this singular region is concentrated in a very 
thin boundary-layer type region for small T and the integrated effect such as lift 
force is little affected by this local breakdown of the solution. 

Far from the wing, the flow must approach the uniform flow. 
Far from the wing 

q5 N x for x2+y2+z2+oo but not x = 0. 

We will now examine the problem within the framework of the above formulation 
and derive some important physical pictures. 

3. Physical background 
A standard technique to solve equations (2.1) to (2.5) for a finite aspect ratio A 

is to replace the wing and the jet sheet by such a distribution of the boundvorticity 
that the required boundary conditions are satisfied when its effect is integrated 
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over the whole vorticity field by the Biot-Savart law. Any change in the bound 
vorticity distribution must be accompanied by a system of horse-shoe trailing 
vortices. The resulting singular double integral equations with mixed boundary 
conditions seem intractable to  any rigorous analysis with little possibility for 
further simplification. Some substantial approximations such as interpolations 
(Maskell & Spence 1959) or a resort to  the numerical approach (Das 1965) are 
necessary to  make progress from this lifting surface type approach. 

A remarkably simple approach emerges, however, if we examine the equations 
(2.1) to  (2.5) carefully for large aspect ratios. This can be best demonstrated 
with a particular reference to figure 2. This following argument is important to. 
the correct understanding of the problem. 

FIGWRE 2. Basic-flow structure. 

We see that three distinct flow regions exist in this problem. 
Close to  the wing whose chord and span length are of 0(1/A) and O(1) re- 

spectively the flow is dominated by the bound vorticity of the wing including 
the portion of jet sheet near the wing. This is so because to an observer in this 
domain the wing seems to extend to infinity.? I n  this inner region, the flow 
approximates to that of two dimensions. This can be easily confirmed by choosing 
the inner variables 

X = A z ,  Y = y ,  Z = A z  with A + m ,  (3.1) 

since then the Laplacisn operator reduces to the two-dimensional one. 
Now if we are away from the wing a t  a distance of O( l), to an observer in this 

domain, the length scale of wing chord vanishes with the wing shrinking to a 
line. This line becomes the main source for disturbances to the otherwise uniform 
flow in this domain. This situation corresponds exactly to the more familiar 
Oseen region in viscous flows. See Lagerstrom (1964, p. 98) for the similar 

t This would obviously not be true near the tip of the wing. However, this local break- 
down of the analysis is not serious for most of the well-shaped wing forms. This defect 
becomes serious for rectangular wings for example, see 0 6, for the details. 
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physical interpretation. Now in the presence of the jet sheet, this non-uniformity 
of the flow means that, besides a system of trailing vortices originating from the 
inner domain, the bound vorticity exists in this domain. The reason is now evident. 
Because the jet sheet must be the streamline of the flow, any deviation of the 
flow from the uniform flow implies the existence of curvature in the jet sheet and, 
hence, the pressure discontinuity across it due to the non-zero jet momentum. 
From our observation above of the wing as a singular line, one of the most 
important results in this work emerges. That is, the shape of the jet sheet and 
hence the strength of the bound vorticity in this outer domain is actually pre- 
determined by the strength of singularities along this line. To see this mathe- 
matically, i t  is sufficient to note that t,he jet vorticity given in (2.4) is of higher 
order than the velocity field itself in the outer domain while in terms of the 
inner variables, they become of the same order. We then see that in the outer 
region the flow determines the jet shape but in the inner region they are com- 
pletely interdependent. See equations (4.2) and (4.10) to follow for details. 

Finally we should note that if z = O(A) ,  far removed from the wing, the Lap- 
lacian operator again reduces t o  that of two dimcnsions but this time in the 
(y, z )  plane which is normal to the main-stream direction. The importance of this 
plane is recognized by Trefftz (1921) since the aerodynamic forces on the wing 
such as drag and lift can be calculated by knowing the flow properties in this 
plane. The trace of the vortex sheet in the slit in this plane must now account 
for all the bound vort'icity distribution in the streamwise direction including 
the inner and outer regions. We will see then that in the analysis, we need the 
circulation in two different circuits as shown in figure 2, one in a smaller circuit 
C8 extending up to the overlap domain and the other in a large circuit C, spanning 
this Trefftz plane enclosing the whole inner and outer regions. We need the 
former to  represent the strength of singularities in the inner region and the 
latter to compute the aerodynamic forces. 

The asymptotic solution we obtain in 9 4 by the method of matched expansions 
is consistent with this physical picture; because Kerney (1967) has not taken 
into account the existence of the jet bound vorticity in the outer region which 
obviously exists, as this argument shows, his solution is incomplete despite the 
fact that his inner and outer solutions seem to match. 

4. Solution 
4.1. Outer limit 

We will seek the solution as A -+ co with x, y, z fixed. Because the wing shrinks 
to a line, the inner boundary conditions applied on the wing equations (2.2) and 
(2.3) cannot be enforced. Hence the governing equations are 

9xx + A U  + $22 = 0, (4.1) 

rj = - ( C Q j / W  wx(x, Y, 0) (x > xm), (4.2) 

$ N X  as x2+y2+z2-+m (z + 0). (4.3) 

Here x, is a point in the overlap domain where the matching is carried out, as 
sketched in figure 2. The missing inner boundary conditions on the wing must 
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be replaced by the matching requirement as given in $4.2 below. We see that 
the potential 4 and corresponding velocity components can be expanded as 

} (4.4) 
q%, Y, z,1/A) = $1(5, Y, 2) + (1/A) 4 2 @ ,  Y, 2) + (1/AZ) 9&, y, x), 
w(z,y, z, l/A) = w,+ (l/A) w,+ (1/A2) WQ + . . .. 

To the first approximation, there arise no disturbances from the wing. 

= x hence w1 = 0. (4.5) 
This means that the first-order inner solution must satisfy the uniform outer 

flow condition exactly. Before examining the inner expansions, we will clarify 
the simplified matching procedure used throughout this analysis. 

4.2. Matching procedure 

The success of the method of the inner and outer expansions, of course depends 
on the existence of the overlap domain in the intermediate region. This is clearly 
demonstrated by Van Dyke (1964) for wings without jet flap. The physical 
picture presented in 3 3 suggests that this should also be true with the presence 
of the jet flap. Now the matching must be carried out for any sector of the overlap 
domain. For the simplification of the analysis we use a special sector for this 
matching. Namely, 

the inner representation of the outer solution with z /x  fixed (say C) 

= the outer representation of the inner solution with Z / X  ( =  C). (4.6) 

This point seems to be first brought out by Ashley & Landahl(l966, p. 141). We 
choose C = 0 rather than 00 which is chosen by Ashley & Landahl. This now allows 
us to match the outer downwash field w and the inner downwash W on the plane 
z = 0 in the overlap domain. The matching of the downwash field at  Z = 0 has also 
been used by Kerney (1967). 

4.3. Inner limit 

In  the inner limit, we seek the solution as A --f 00 with inner variables X ,  Y ,  2 
fixed. We also must stretch the potential 4 if the inner boundary conditions are 
to be satisfied. Hence, 

4 = A- l@(X,  Y ,  Z,l /A) as X, Y ,  Z fixed as A -+ co, 

where from (3.1), X = Ax, Y = y, Z = Ax. Now the governing equations are 

@)xx + @zz = - @'yF/A2, 

W ( X ,  Y ,  0 )  = e ( X ,  Y )  +a( Y ) ,  - +c( Y )  < x < &( Y ) ,  

W ( X ,  Y ,  0)  = .(X, Y )  + 7( Y ) ,  x = $c( Y ) ,  

(4.7) 

(4.8) 

(4.9) 
Y j ( X ,  Y )  = - +CCjW,(X, Y ,  O ) ,  x > &( Y ) .  (4.10) 

The potential @, therefore the corresponding velocity components ( U ,  V ,  W ) ,  
can be shown to have the following expression: 

@(X, Y ,  Z , l / A )  = QI(X, Y ,  2) + Q Z ( X ,  Y ,  Z ) / A  + O(ln A/AZ), 

w(x,  Y ,  Z,l /A) = w(x, Y ,  2) + W,(X, Y ,  Z ) / A  + O(ln A / A 2 ) ,  I (4.1 I), 

J ............................................................................... 
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We will see that the logarithmic term must intervene at the third approxima- 
tion of the inner expansion for the jet flap case just as in Van Dyke’s (1964) 
analysis. See (4.41) for further details. 

Substituting (4.11) into (4.7) to (4.10), we easily find that 0, must satisfy the 
two-dimensional problem at each section Y as studied by Spence (1956). Except 
for Hough’s (1959) work which was a study of the jet flap with parabolic camber 
distribution, all the existing two-dimensional solutions assume zero camber or 
6 = 0. In  the analysis to follow, we also assume that s ( X ,  Y )  = 0, but the same 
analysis follows even if e + 0. 

It is well known that the complex velocity of a thin lifting airfoil in two 
dimensions can be expressed in terms of the local strength of vortices placed on 
the axis by the Cauchy-Riemann relation. Now the first-order inner solution 
which matches (4.5) is 

(4.12) 

Note that (4.12) satisfies the uniform flow condition as Z -+ 00. rl has been 
determined by Spence superimposing the effect of a and T as 

Fl(X, Y )  = T W ,  cj, + af , (X,  cj,. 
In  terms of lift coefficient Cg’ in two dimensions 

(4.13) 

Spence (1961) gives aC$?/aa and aCgl/ar as 

(4.14) 
acp 

where ,8 = 4eY, y being Euler’s constant 0.5772.. .. 
We can formally expand the imaginary part of (4.12) with 2 = 0 to obtain 

m, n1 w, N - y1 +-+- +..., 
2 n x  2nX2 2nx3 

(4.16) 

m 

(4.17) 

where 

OD m 

m, = 1 x’r, dx’, n, = 1 x’zr, ax‘, . . . . 
- t c  - t c  

y1 corresponds to the circulation, while m, expresses the pitching moment around 
the leading edge due to the distributed vortices and the following terms denote 
successively higher-order moments. 

4.4. Second approximation 
Outer solution. As evident from Van Dyke’s analysis, a solution for the second- 

order outer expansion g2 which matches the first term of W, in (4.16), can be 
constructed by placing a line vortex along x = 0 to  which the wing shrinks in 
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this outer limit. This strength of circulation must be defined in a smaller circuit 
C, of figure 2 which encloses the wing and the whole inner region. This circulation 
has also the following expansion: 

qy, 1/A)  = Z,(y)/A +13(y)/A2+ .... (4.18) 

To complete the outer flow field however, one must add the effect of the jet 
bound vorticity y j  from this order. For disturbances now arise in this domain in 
otherwise uniform flow by the presence of the wing and jet. Since #2 is O(l/A),  
(4.2) shows that y j  is O(l/A2) and is therefore of higher-order effect. However, 
we must recognize that y j  unlike the line vortex 1 is distributed uniformly over 
the whole outer field. Therefore the accumulated effect of y, may possibly have 
the effect of 0(1/A) .  Such a situation arises in linear supersonic flow whose 
paradox was successfully resolved by Whitham (1952). However, in the present 
problem, because y j  cc wZ or y j  is the exact differential of the velocity with respect 
to x, the integrated effect still remains of O(l/A2).  So this effect will not appear 
until the next approximations. Hence, w2 a t  2 = 0 is given as 

Expanding by the inner variables 

(x + 0). 

(4.19) 

(4.20) 

For large x (4.21) 

where (4.22) 

Here ai, is the induced incidence. By matching, 

1, = y1 = 2c 1 (y2r .  (4.23) 

Innet- solution. From (4.20), we confirm that Q2 of (4.1 1) is the correct inner 
term to  this order. O2 still satisfies the Laplace equation in two dimensions. 
Furthermore, the boundary conditions introduced by the induced incidence 
ai2 of (4.20) suggest t'hat O2 is simply the result of reducing the incidence angle a 
by ai2. Hence the solution for O2 follows immediately from Spence's solution by 
putting a = -ai2, T = 0 in (4.13) (see also Kerney 1967). 

W2 at Z = 0 can be expanded as 

(4.24) 

(4.25) 

where 
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Hence to  this order, the outer expansion of the inner expansion is 

w N y + K / A  N A + a i e  - + - {-- m1 + 2) + 0 ( 1 / ~ 3 ) .  
2nAx A A2 2nx2 

(4 .26 )  

4 .5 .  Third approximation 

Outer solution. The outer flow to this order becomes more complex because be- 
sides the line vortex, we further need the higher-order vortex distribution (called 
divortex by Van Dyke 1964) to match to the term mllx2 of (4 .26)  and most 
important in this problem, jet vortex sheet starts to have effect. We write 

w3 = wa + W3d + w3j. (4 .27 )  

Subscripts I ,  d and j  refer to the flow due to the line vortex, divortex and jet sheet 
respectively. They will be determined in the following. 

w3 :f iw due to line vortex. Equation (4 .26 )  shows that l3 is O(A--2) as given by 
(4 .18) .  Therefore wa can be expressed in the same form as w2 of (4 .19 ) ,  

(4 .28)  

Now l3 must be the strength of the circulation in the smaller circuit C, which 
intersects the x axis at x,. Besides y 2  of (4 .26 ) )  both the residue of y1 beyond x ,  
and the induced incidence ais turn out to have the effect of O(A-2). Taking these 
into account, I ,  can be shown to be 

(4 .29)  

This result follows from the expansion of W in (4 .26) .  Compare this with that 

Now we define the induced incidence in this order by aioa, ai,, and ais2. 
given in (4 .38 ) .  

(4 .30)  

It turns out that ais, cancels out and does not appear in the final result. Then for 
x + o  

Forx-tco (4 .32)  

wQd :$ow due to divortex. Successively higher-order singularities are necessary 
in the outer expansion to match to the terms corresponding to the higher-order 
moment of the distributed vorticity in the inner expansion such as ml/x2, nl /x3 ,  . . . 



716 N .  Tokuda 

of (4.16). For the first moment which is physically the pitching moment, Van 
Dyke (1964) has shown that the potential of a divortex distribution which is the 
x-derivative of that for the line vortex must be used. The divortex strength 6 
can be expanded as 

w~~ can now be given at z = 0 as (Van Dyke 1964) 

Y -Y1 
2 idyl. W3d = - 2 2  - a / 1  6, 

477, aY -1 CX2+(Y-Y1) 1 (4.33) 

The strength of the divortex 6, can be determined by matching 

6, = rml. (4.34) 

wQi :$ow due to je t  vorticity. The downwash field w3i due to the jet sheet vortices 
can only be expressed by using the full lifting surface expression, 

Now the jet vorticity yj has the following expansion: 

From the boundary condition (4.2) and the physical arguments yf3 is now pre- 
determined by w2 

Although w3j cannot be readily expressed in a explicit form, we can find a 
few terms of the asymptotic expansion as x -+ 0 and x -+ m. Write w3j = w3j, + w ~ , ~ ,  

Note 

From (4.38) 

For x -+ 0 with x, < x, w3j2 can be approximated. 

(4.38) 

(4.39) 

(4.40) 

This is so because the dominant term of the integral comes from the singularity at  
xl = xn. We note that the singularity of the integral at q = x is anti-symmetric 
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near x1 = x so that the contribution from this region may be obtained by the 
Cauchy principal value of the integral. A rough check suggests this is O(ln xm/x2). 
Because wz N (y1/27rxm) + a,, as xm +- 0 the contribution of the integral from the 
immediate neighbourhood of x = xm is (cC,yl/8nzxxm) + (cCJ4nx) a,%. 

Hence (4.41) 

There should arise a constant term in (4.41) corresponding to the induced 
incidence due to this jet sheet. This can only be evaluated if we can evaluate 
(4.37) more exactly and remains undetermined. 

For x + 00, the leading term of wS3* is equal to w,,~ 

(4.42) 

Hence w, will behave as follows. For x -f 0 

We see that O(lnA/A2) term must precede the O(1/A2) term in the next inner 

Now i f x  + 00 

expansion in agreement with Van Dyke’s (1964) analysis. 

w,, 2[~iso--is,1 +0(1/x). (4.44) 

Although the downwash wQm at x = co is known exactly, induced incidence 
at the wing as x +- 0 is not known due to aiqi. Because the jet bound vorticity is 
distributed over the whole downstream region of the wing, unlike conventional 
wing theory which requires aim = 2ai, a,, does not have to vanish. We see that 
the induced incidence to this order now arises not only from the circulation in 
the inner domain aiso, but also from the jet sheet bound vorticity, ais2 and 
With this induced incidence providing new boundary conditions, the third term 
inner solution can be formally formulated. As in Van Dyke, one must add a 
logarithmic term in the expansion. However, with the presence of the jet flap, 
a solution for the two-dimensional Poisson equations seem too complicated to 
obtain a useful result. We will show in the following that the solution obtained 
so far provides the two terms of the asymptotic series in lift and drag which 
already provides acceptable results. 

5. Aerodynamic forces 
Aerodynamic forces acting on wings such as lift and drag forces can be most 

easily evaluated by considering the large control volume along a large circuit 
C, of figure 2 which intersects with the Trefftz plane. In  our problem we must add 
the direct contribution to the lift and drag forces of the jet thrust a t  the exit, 
because the jet remains deflected. Maskell & Spence (1959) and Kerney (1967) 
have shown then that the coefficient for lift and the induced drag can be ex- 
pressed in terms of the flow quantities in the Trefftz plane. Kerney particularly 
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gives a detailed derivation on this issue. The results for the lift coefficient C, 
and induced drag coefficient CDj are 

Here w, and v, are the velocity components in the Trefftz plane, and the in- 
tegration is required over the whole Trefftz plane. Noting that 

j wm(y, 2) = L, 
--m 

L being the circulation in a large circuit C,, C, and CD6 can be expressed in terms 
of wm(y, 0) and L (Kerney 1967), 

The circulation L in a large circuit C, will now enclose both inner and outer 
regions. Therefore L must include both the line vorticity 1 and the bound vorticity 
in the jet y, in the outer region 

Using (4.23) and (4.29) and (4.20) and (4.21), 

Y1 1 L=-+-( A A2 yz -CCjai*)+O 

yl,  y2, aiz are all found in Q 4. 
The downwash velocity in the Trefftz plane w, is 

where aiz, aiao and aisz are given in (4.22) and (4.30). 
Substituting L and w, one finally obtains 

(5-3) 

yl, y2, aiz, ais0, aiaz have already been obtained in (4.17), (4.25), (4.22) and (4.30) 
respectively. 

We should particularly note here that, to this order of approximation, the 
direct positive lift contribution from the deflected jet sheet a t  the exit is cancelled 
by the reduced jet bound vorticity in the outer flow. Hence the correct lift 
coefficient is given by merely integrating the two-dimensional inner solution in 
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a spanwise direction without adding the extra jet exit momentum as given by 
(5.5). This can be easily checked since the strength of the jet bound vorticity is 
an exact differential of the downwash field. The decrease of the circulation in the 
jet sheet from that of the two-dimensional value is lcC w,  but this is exactly 
the added amount of lift force due to the deflected jet. Also we note that the 
induced incidence arising from the jet vorticity now affects the drag term. 

z *  

6. Application to a family of planforms 

Each of the following wings has an aspect ratio A from our definition: 
Following Van Dyke (1964), we apply the result to a family of wing planforms. 

wing a, cusped wing 

wing 6 ,  lenticular (parabolic) wing c(y)  = 3(1- y2), 
8 

wing c, elliptic wing C ( Y )  = ; (1  - Y 2 ) 4  

wing d,  rectangular wing C(Y) = 2H( 1 - y2). 

Here H above denotes the Heaviside step function. 
Given the wing planform c(y)  and further assuming that Cj, a and T are con- 

stant along the spanwise direction, one can now integrate (5.5) and (5.6) for 
each wing planform. Some of the contour integration required in the reduction 
of this integral will be described in the appendix and the results only will be 
given below. Van Dyke (19G4) clearly demonstrated that, for these wing prob- 
lems, a fractional form always improves the approximation considerably. So 
the h a 1  results are given in this fractional form. 

Wing a: cusped wing 

Wing b:  lenticular wing 

Wing c: elliptic wing 

1 1+-- /[ ,a 
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For an elliptic wing, CDi may be rewritten as 

Hence 

This relation must hold exactly for wings of elliptic loading with the jet flap 
as first pointed out by Maskell & Spence (1959). 

A similar integration of C, and CDi for rectangular wings leads to meaningless 
divergent results. This is physically expected (see $3) .  This is because near the 
tip of the wing, the induced load must become of the same order of the original 
load given by the two-dimensional analysis and the present perturbation scheme 
breaks down. It i s  true that a similar breakdown occurs for wing b and c locally 
near the tip of the distance O(e-a) and O(A-2) respectively. However, since 
the original load itself vanishes in proportion to the chord length, C, and CDi 
can still be integrated. See Van Dyke (1964) for detailed discussions. For wings 
without jet flap, this defect has been corrected by Stewartson (1960) by isolating 
the tip and solving the problem of lifting semi-infinite rectangular wings. 
Stewartson's result can be applied to the present problem with the jet flap a t  
least to O(A-l), because, as we have already noted, the bound vorticity in the 
jet sheet in the outer region makes no contribution to the lift. Therefore, the 
loading along the wing can be simply determined, at  least to this order, by the 
same argument used for the lifting line theory without the jet flap, provided 
the lift derivative aCg'/aa is that for jet flapped airfoils of (4.14). 

Wing d :  rectangular wing 

where y is Euler's constant 0.5772. We note the logarithmic dependence of the 
aspect ratio A which is distinct from other wing forms. The second term of CDi 
has not been determined. 

7. Results and discussions 

and the following results are given: 
Kerney (1967) and Maskell & Spence (1959) considered only the elliptic case 

Kerney : 

Maskell & Spence: 
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Kerney has ignored the circulation in the outer jet sheet. With this effect taken 
into account, (7.1) reduces to the present result (6.4). Maskell & Spence intro- 
duced CT in (7.2) as a small positive quantity describing the deviation of uioD 
from the conventional value 2ui 

a =  1 - - 2 .  
2a. 

a i m  

0.5 1 .o 1.5 2.0 

FIGURE 3. Lift curve for three-dimensional jet-flapped wing. Rectangular wing; 7 = 31.3' 
and a = 0. 00, experiment, Williams & Alexander (1957); - , present theory, rect- 
angular wing; x - x , corrected. Maskell & Spence (1959), and Kerney (1967), elliptic 
wing. 

The present analysis has established that to O(A-l), a = 0. But such non-zero 
value of a may appear at  O(AP) as seen from (4.43) and (4.44). Hence the effect 
of CT is O(A-2). Now their result is consistent with the present result if 

aCplaa - 2n = 2cj. 

That this relation holds quite accurately over a wide range of Cj can be seen 
from figure 4 of their own paper. We see that Maskell & Spence give a correct 
result but it must be written in the present form (6.4) to be consistent with 

46 F L M  46 
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asymptotic expressions. If the present formulae for elliptic wings are used with 
appropriate correction for the thickness effect (Maskell & Spence 1959), it 
underestimates considerably the experimental data of Williams & Alexander 
(1957) who used a rectangular wing in their experiments as shown in figure 3. 
On the other hand, the present result using the formula for a rectangular wing 
shows remarkable agreement with the experiments for a wide range of Cj,  A 
and also a (see also figure 4). The reason for the disagreement of C, between the 
elliptic and rectangular wings becomes clear if we compare the loading dis- 
tribution along the wing. 

1 .ob 
f I I I 

5.0 10.0 15.0 

U 

FIGURE 4. Variation of CL with a and C,. Rectangular wing; T = 31.3' and A = 6.8. 
0 0, experiment, Williams & Alexander (1957) ; __ , present theory, rectangular wing. 

The load distribution L for elliptic wings is elliptic. Hence 

L(y)/L@) = (1 -y2)li. 1 +-- /[ A a::]. (7.3) 

Here L(2) is the load for two-dimensional flow as A -+ a. 

from Stewartson's (1960) solution as 
The load distribution for rectangular wings can be computed asymptotically 
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The function f is the loading function and is tabulated numerically by Stewartson 
where in our notations 

(7.5) 
2Ae  ( 1 - y )  = - ( l - y ) .  

4 A e  4 A  
- , z=- r = - - -  8A 

acg)/aa n acplaa n 

We have introduced the effective aspect ratio A e  for the jet-flapped wing 

We see that, with the use of the effective aspect ratio Ae, all the expressions 
for C, given in 5 6 will reduce to those without the flap. We confirm that as Cj 
increases, aCg)/aa increases thus A e  is reduced. 

0.8 

C & 0.6 

0.2 

0 

--- -- - 7 Ae =F.-JJj - - - - - - - - - - - 

---------- 

0.8 1.0 0.2 0.4 0.6 

Load L(y)/L(’) 

FIGURE 5. Load distribution for elliptic and rectangular wings. - - -, rectangular wings; 
-, elliptic wing. Ae = A x 2 7 r / ( X 3 ) / & ~ ) .  

The load distribution for several values of A e  is plotted in figure 5 using (7.3) 
and (7.4). Considerable differences exist between the loading of the two wings 
which clearly account for the disagreement in C,. It is noted that, except for 
high aspect ratios, the load distribution for rectangular wings is very close to 
being elliptic, although the scale of L ( y )  differs from that of corresponding 
elliptic wings. See also the measurement of the load distribution by Das (1965) 
which supports this. This point is further confirmed by the plot of the drag- 
lift ratio in figure 6. At A = 6.8 which corresponds to A e  E 3.5 N 4.5 since 
aCg’/aa z 10 N 12 this ratio CDi/CL differs very little for rectangular and elliptic 
wings which must be the minimum as is well known. As expected, this ratio 
starts to increase considerably for parabolic and cusped wings. 

Stimulating discussions on the subject with Professor M. J. Lighthill have 
been most useful. The present work was completed at  the Department of 
Applied Mathematics and Theoretical Physics, the University of Cambridge, 
while the author was a visitor. The author wishes to express his deep appreciation 
to Professor G. K. Batchelor for the hospitality during his stay. The present work 
was conducted for Lockheed Georgia Company. 
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- Rectangular wing +=+ - Elliptic wing 

x-X Parabolic wing 

A-* Cusped wing 

/ 
A /* 

I I I I 

1 .o 2.0 3.0 

CD~ICL 

FIGURE 6. Variation of CDj/C~  for various wings; 7 = 30", CI = O", A = 6.8, Cj = 1 N 4. 

Appendix 
The integrals necessary in evaluating the induced downwash ai2, uiBo, ai3 

associated for various wing planforms of (6.1) can be found in the table given 
by Van Dyke (1956). For constant Cg), aCg)/aa andCj acrossthe spanof the wing, 
a,.. and aiIo, a,32 are given as follows: 

Wing b :  lenticular C(L2) - 
47T 1-Y 

1 
IVing c :  elliptic C g ) -  

7l 

1 
Wing d :  rectangular C(,z) - - 

271( 1 - g2) 

aisr can be obtained by merely replacing 2CE)jaa by - 2Ci in the expression for 
a,i,,. With those values of induced downwash, the integration of lift and drag 



Asymptotic theory of the jet  Jlap 725 

coefficients are mostly quite straightforward. The only integral not straight- 
forward appears in the integration for wing b of the form 

and this will be obtained below by contour integration. 

Write 
1 - t  

Y = m '  

Consider the following contour integration I 

where 

We choose contour C around the negative real axis 0 to - 00 and closing it by 
a large circle as shown in figure 7 .  

We find 

therefore F = - Q residue of I. 

The residue of the integral I arises from x = 1 and is equal to - (in2 + 4). Therefore 
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Similarly we find 

Using this result, the lift and drag coefficients given in (6.2) to (6.4) can be 
found. 
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